GILA RIVER BASIN ### 09508500 VERDE RIVER BELOW TANGLE CREEK, ABOVE HORSESHOE DAM, AZ LOCATION.—Lat 34° 04'23", long 111° 42'56", in sec. 35, T.9 N., R.6 E. (unsurveyed), Yavapai County, Hydrologic Unit 15060203, in Tonto National Forest, on right bank 1.3 mi downstream from Tangle Creek and 9 mi upstream from Horseshoe Dam. **DRAINAGE AREA**.--5,858 mi², of which 365 mi² is noncontributing, including 357 mi² in Aubrey Valley Playa, a closed basin. ### WATER-DISCHARGE RECORDS **PERIOD OF RECORD**.--Aug. 1945 to current year. REVISED RECORDS.--WDR AZ-89-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 2,029.0 ft above sea level. **REMARKS.**—No estimated daily discharges. Records good. About 12,500 acres above station are irrigated by surface water and ground water. Low flow slightly regulated by powerplant 32 mi above station, using water from Fossil Creek. This station is above all major reservoirs on Verde River. EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 145,000 ft³/s Jan. 8, 1993, gage height 23.4 ft, from slope-area measurement of peak flow; minimum, 48 ft³/s June 17, 1956, July 18 and 19, 1958, caused by power regulation on Fossil Creek; minimum daily, 58 ft³/s Aug. 15 and 18, 2002. EXTREMES OUTSIDE PERIOD OF RECORD.—Maximum discharge since at least 1888, 150,000 ft³/s Feb. 24, 1891, based on comparison with peak discharge at other stations on Verde River. #### **EXTREMES FOR CURRENT YEAR.--**: | | | | Date | | Time | me Discharge (ft ³ /s) | | Gage heig | ht (ft) | | | | |------------------|-----------------------|---------------|---------------------------|-----------------|------------------|-----------------------------------|---------------------------|------------------|--------------|--------------|-----------------|---------------| | | | | Sept. 11 | | 2245 | 2,8 | 50 | 9.35 | | | | | | Minim | num daily di | scharge, 58 f | t ³ /s Aug. 15 | and 18. | | | | | | | | | | | | | DISCHAR | GE, CUBIC | FEET PER | | WATER YEAR
Y MEAN VALU | | 2001 TO | SEPTEMBER | 2002 | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 110 | 178 | 221 | 259 | 235 | 197 | 187 | 154 | 92 | 67 | 69 | 71 | | 2 | 124
124 | 189
191 | 222
224 | 256
254 | 235
238 | 196
192 | 190
179 | 151
144 | 85
82 | 66
70 | 65
67 | 73
72 | | 4 | 128 | 190 | 241 | 253 | 240 | 198 | 166 | 140 | 80 | 66 | 72 | 71 | | 5 | 139 | 187 | 263 | 252 | 247 | 204 | 160 | 143 | 79 | 67 | 74 | 66 | | 6 | 142 | 187 | 254 | 250 | 257 | 204 | 163 | 142 | 80 | 67 | 83 | 65 | | 7
8 | 146
177 | 196
198 | 251
246 | 249
250 | 254
255 | 206
213 | 180
191 | 144
136 | 82
82 | 66
65 | 99
107 | 90
578 | | 9 | 264 | 198 | 242 | 250 | 252 | 208 | 208 | 131 | 79 | 63 | 104 | 920 | | 10 | 280 | 201 | 242 | 248 | 249 | 202 | 208 | 124 | 79 | 65 | 96 | 724 | | 11 | 242 | 199 | 247 | 247 | 249 | 204 | 204 | 118 | 81 | 63 | 87 | 1210 | | 12
13 | 211
201 | 199
202 | 251
252 | 246
248 | 250
249 | 205
187 | 195
183 | 109
118 | 81
81 | 77
77 | 81
76 | 1380
765 | | 14 | 198 | 202 | 252 | 249 | 252 | 184 | 170 | 135 | 82 | 80 | 70 | 507 | | 15 | 200 | 205 | 252 | 249 | 243 | 188 | 156 | 124 | 80 | 102 | 58 | 368 | | 16 | 194 | 206 | 255 | 247 | 237 | 193 | 151 | 112 | 76 | 177 | 61 | 305 | | 17 | 186 | 209 | 256 | 245 | 231 | 192 | 144 | 107 | 76
78 | 103 | 63 | 275 | | 18
19 | 187
185 | 210
205 | 257
254 | 243
242 | 227
224 | 198
211 | 143
147 | 103
98 | 76
76 | 91
97 | 58
64 | 247
224 | | 20 | 184 | 203 | 255 | 240 | 225 | 215 | 142 | 95 | 70 | 94 | 65 | 202 | | 21 | 175 | 208 | 256 | 238 | 220 | 208 | 140 | 92 | 71 | 93 | 65 | 182 | | 22 | 175 | 212 | 256 | 240 | 212 | 198 | 140 | 88 | 68 | 91 | 64 | 171 | | 23
24 | 173
172 | 209
211 | 254
253 | 239
238 | 208
204 | 188
178 | 138
132 | 95
98 | 67
65 | 80
83 | 63
63 | 161
153 | | 25 | 169 | 216 | 252 | 234 | 199 | 174 | 134 | 96 | 65 | 89 | 60 | 146 | | 26 | 166 | 217 | 251 | 230 | 190 | 174 | 134 | 99 | 65 | 92 | 64 | 140 | | 27 | 166
176 | 214
212 | 252
252 | 227
225 | 183 | 169
167 | 132
133 | 103
100 | 66
70 | 82
85 | 66
69 | 131
129 | | 28
29 | 176 | 212 | 252 | 225 | 187 | 172 | 143 | 97 | 69 | 80 | 69 | 132 | | 30 | 177 | 218 | 253 | 228 | | 176 | 152 | 96 | 69 | 84 | 71 | 137 | | 31 | 171 | | 256 | 231 | | 183 | | 94 | | 79 | 73 | | | TOTAL | 5518 | 6088 | 7724 | 7532 | 6452 | 5984 | 4845 | 3586 | 2276 | 2561 | 2246 | 9695 | | MEAN
MAX | 178.0
280 | 202.9
218 | 249.2
263 | 243.0
259 | 230.4
257 | 193.0
215 | 161.5
208 | 115.7
154 | 75.87
92 | 82.61
177 | 72.45
107 | 323.2
1380 | | MIN | 110 | 178 | 221 | 225 | 183 | 167 | 132 | 88 | 65 | 63 | 58 | 65 | | MED | 176 | 204 | 252 | 246 | 236 | 196 | 154 | 109 | 79 | 80 | 69 | 166 | | AC-FT
CFSM | 10940
0.03 | 12080
0.04 | 15320
0.05 | 14940
0.04 | 12800
0.04 | 11870
0.04 | 9610
0.03 | 7110
0.02 | 4510
0.01 | 5080
0.02 | 4450
0.01 | 19230
0.06 | | STATIST | TICS OF M | ONTHLY ME | AN DATA FO | R WATER Y | EARS 1946 | - 2002, | BY WATER | YEAR (WY) | | | | | | MEAN | 323.2 | 359.9 | 703.7 | 822.4 | 1164 | 1497 | 840.2 | 211.3 | 132.0 | 175.9 | 318.3 | 277.9 | | MAX | 4194 | 1384 | 4644 | 12420 | 11020 | 10420 | 5638 | 1322 | 316 | 430 | 1184 | 1463 | | (WY)
MIN | 1973
155 | 1966
192 | 1979
227 | 1993
224 | 1980
220 | 1978
193 | 1973
155 | 1973
113 | 1955
75.9 | 1953
75.5 | 1951
72.5 | 1970
98.5 | | (WY) | 1951 | 1963 | 1951 | 1961 | 1964 | 2002 | 1963 | 2000 | 2002 | 1958 | 2002 | 1956 | | SUMMARY | STATIST | ICS | FOR 2 | 001 CALEN | DAR YEAR | F | FOR 2002 WA | TER YEAR | | WATER YEAR | S 1946 - | 2002 | | ANNUAL
ANNUAL | | | | 115680
316.9 | | | 64507
176.7 | | | 566.2 | | | | | riean
r Annual | MEAN | | 310.9 | | | 170.7 | | | 2229 | | 1993 | | | ANNUAL M | | | | | | | | | 177 | | 2002 | | | DAILY ME | | | 2950
74 | Mar 15
Jun 15 | | 1380
58 | Sep 12
Aug 15 | | 110000
58 | Jan 8
Aug 15 | | | | | Y MINIMUM | | 77 | Jun 15 | | 62 | Aug 15 | | 62 | Aug 15 | | | | RUNOFF (| | | 229500 | | | 127900 | | | 410200 | _ | | | | RUNOFF (
CENT EXCE | | | 0.05
628 | 8 | | 0.03
252 | 2 | | 0.10
870 | | | | | CENT EXCE | | | 211 | | | 177 | | | 238 | | | | 90 PERC | CENT EXCE | EDS | | 97 | | | 69 | | | 120 | | | # 09508500 VERDE RIVER BELOW TANGLE CREEK ABOVE HORSESHOE DAM, AZ—CONTINUED WATER-QUALITY RECORDS PERIOD OF RECORD.--Oct. 1980 to current year. # WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date
DEC | Time | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | TUR-
BID-
ITY
(NTU)
(00076) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
AIR
(DEG C)
(00020) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | HARD-
NESS
NONCARB
DISSOLV
FLD. AS
CACO3
(MG/L)
(00904) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | |--|---|--|---|---|--|---|---|---|--|---|--|---|---| | 18
APR | 1415 | 247 | 1.2 | 709 | 11.4 | 104 | 8.5 | 642 | 20.5 | 8.0 | 5 | 260 | 48.0 | | 03
JUN | 1220 | 179 | 20 | 705 | 8.9 | 103 | 8.4 | 675 | 30.5 | 18.4 | 10 | 260 | 45.0 | | 13
AUG | 1340 | 80 | 19 | 704 | 8.0 | 106 | 8.4 | 772 | 36.5 | 25.4 | 15 | 270 | 43.0 | | 09 | 1110 | 108 | 25 | 707 | 7.1 | 96 | 8.4 | 796 | 40.0 | 26.7 | 15 | 290 | 46.0 | | Date | CALCIUM
TOTAL
RECOV-
ERABLE
(MG/L
AS CA)
(00916) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | MAGNE-
SIUM,
TOTAL
RECOV-
ERABLE
(MG/L
AS MG)
(00927) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | SODIUM
AD-
SORP-
TION
RATIO | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | CAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3
(00452) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | | DEC 18 | 51.0 | 34.0 | 34.0 | 2.40 | . 9 | 35.0 | 255 | 287 | 12 | 24.0 | .3 | 58.0 | <1cl | | APR 03 | 49.0 | 36.0 | 37.0 | 2.70 | 1 | 43.0 | 250 | 295 | 5 | 27.0 | .3 | 76.0 | 30 | | JUN
13 | 47.0 | 39.0 | 40.0 | 3.40 | 1 | 56.0 | 252 | 284 | 12 | 38.0 | . 4 | 100 | 25 | | AUG
09 | 51.0 | 42.0 | 41.0 | 3.80 | 2 | 63.0 | 258 | 308 | 12 | 40.0 | . 4 | 110 | 37 | | | | | | | | | | | | | | | | | Date | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N)
(00610) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
(71845) | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
(00630) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N)
(00605) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340) | E COLI,
MTEC MF
WATER
(COL/
100 ML)
(31633) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | ANTI-
MONY,
DIS-
SOLVED
(UG/L
AS SB)
(01095) | | Date DEC 18 | DIS-
SOLVED
(TONS
PER
AC-FT) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | GEN,
ORGANIC
TOTAL
(MG/L
AS N) | PHORUS
TOTAL
(MG/L
AS P) | DEMAND,
CHEM-
ICAL
(HIGH
LEVEL)
(MG/L) | MTEC MF
WATER
(COL/
100 ML) | FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML) | MONY,
DIS-
SOLVED
(UG/L
AS SB) | | DEC | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
(00610) | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
(71845) | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
(00630) | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
(00605) | PHORUS
TOTAL
(MG/L
AS P)
(00665) | DEMAND,
CHEM-
ICAL
(HIGH
LEVEL)
(MG/L)
(00340) | MTEC MF
WATER
(COL/
100 ML)
(31633) | FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | MONY,
DIS-
SOLVED
(UG/L
AS SB)
(01095) | | DEC
18
APR | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
(00610) | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
(71845) | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
(00630) | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
(00605) | PHORUS
TOTAL
(MG/L
AS P)
(00665) | DEMAND,
CHEM-
ICAL
(HIGH
LEVEL)
(MG/L)
(00340) | MTEC MF
WATER
(COL/
100 ML)
(31633) | FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | MONY,
DIS-
SOLVED
(UG/L
AS SB)
(01095) | | DEC
18
APR
03
JUN | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
E316cl | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) <.20 <.20 | GEN, AMMONIA TOTAL (MG/L AS N) (00610) .01 | GEN, AMMONIA TOTAL (MG/L AS NH4) (71845) .01 .03 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
(00630) | GEN, ORGANIC TOTAL (MG/L AS N) (00605) | PHORUS
TOTAL
(MG/L
AS P)
(00665) | DEMAND,
CHEM-
ICAL
(HIGH
LEVEL)
(MG/L)
(00340) | MTEC MF
WATER
(COL/
100 ML)
(31633)
<1k | FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | MONY,
DIS-
SOLVED
(UG/L
AS SB)
(01095) | | DEC 18 APR 03 JUN 13 | DIS-
SOLVED (TONS PER AC-FT) (70303) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
E316cl
398
450 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) <.20 <.20 | GEN, AMMONIA TOTAL (MG/L AS N) (00610) .01 .02 | GEN, AMMONIA TOTAL (MG/L AS NH4) (71845) .01 .03 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
(00630)
<.020
<.020 | GEN, ORGANIC TOTAL (MG/L AS N) (00605) | PHORUS
TOTAL
(MG/L
AS P)
(00665)
<.02
<.02 | DEMAND,
CHEM-
ICAL
(HIGH
LEVEL)
(MG/L)
(00340) | MTEC MF
WATER
(COL/
100 ML)
(31633)
<1k
E10k | FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625)
<1k
E6k | MONY,
DIS-
SOLVED
(UG/L
AS SB)
(01095) | | DEC 18 APR 03 JUN 13 AUG 09 Date | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303)
.48
.54
.61
.66 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
E316cl
398
450
488
ARSENIC
DIS-
SOLVED
(UG/L
AS AS) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301)
355
380
432
469 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) <.20 <.20 <.20 .70 BARIUM, DIS- SOLVED (UG/L AS BA) | GEN, AMMONIA TOTAL (MG/L AS N) (00610) .01 .02 .02 .02 .02 BARIUM, TOTAL RECOV-ERABLE (UG/L AS BA) | GEN, AMMONIA TOTAL (MG/L AS NH4) (71845) .01 .03 .03 .03 .03 | GEN, NO2+NO3 TOTAL (MG/L AS N) (00630) <.020 <.020 <.020 <.020 BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE) | GEN, ORGANIC TOTAL (MG/L AS N) (00605) 68 BORON, DIS- SOLVED (UG/L AS B) | PHORUS TOTAL (MG/L AS P) (00665) <.02 .02 .06 BORON, TOTAL RECOV- ERABLE (UG/L AS B) | DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340) 7 <55 <5 CADMIUM DIS- SOLVED (UG/L AS CD) | MTEC MF WATER (COL/ 100 ML) (31633) <1k E10k E3k E8k CADMIUM WATER UNFLTRD TOTAL (UG/L AS CD) | FORM, FECAL, 0.7 0.7 UM-MF (COLS./ 100 ML) (31625) <1k E6k E6k CHRO- MIUM, DIS- SOLVED (UG/L AS CR) | MONY, DIS- SOLVED (UG/L AS SB) (01095) <1 <1 <1 <1 CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR) | | DEC 18 APR 03 JUN 13 AUG 09 Date DEC 18 APR 03 | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303)
.48
.54
.61
.66 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(70300)
E316cl
398
450
488
ARSENIC
DIS-
SOLVED
(UG/L
AS AS)
(01000) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(70301)
355
380
432
469
ARSENIC
TOTAL
(UG/L
AS AS)
(01002) | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) <.20 <.20 .70 BARIUM, DIS- SOLVED (UG/L AS BA) (01005) | GEN, AMMONIA TOTAL (MG/L AS N) (00610) .01 .02 .02 .02 BARIUM, TOTAL RECOV-ERABLE (UG/L AS BA) (01007) | GEN, AMMONIA TOTAL (MG/L AS NH4) (71845) .01 .03 .03 .03 .03 BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010) | GEN, NO2+NO3 TOTAL (MG/L AS N) (00630) <.020 <.020 <.020 <.020 BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE) (01012) | GEN, ORGANIC TOTAL (MG/L AS N) (00605) 68 BORON, DIS- SOLVED (UG/L AS B) (01020) | PHORUS TOTAL (MG/L AS P) (00665) <.02 .02 .06 BORON, TOTAL RECOV- ERABLE (UG/L AS B) (01022) | DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340) 7 <5 <5 <5 CADMIUM DIS- SOLVED (UG/L AS CD) (01025) | MTEC MF WATER (COL/ 100 ML) (31633) <1k E10k E3k E8k CADMIUM WATER UNFLTRD TOTAL (UG/L AS CD) (01027) | FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625) <1k E6k E6k CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030) | MONY, DIS- SOLVED (UG/L AS SB) (01095) <1 <1 <1 <1 CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR) (01034) | | DEC 18 APR 03 JUN 13 AUG 09 Date | DIS-
SOLVED (TONS PER AC-FT) (70303) .48 .54 .61 .66 ANTI-MONY, TOTAL (UG/L AS SB) (01097) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
E316cl
398
450
488
ARSENIC
DIS-
SOLVED
(UG/L
AS AS)
(01000) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301)
355
380
432
469
ARSENIC
TOTAL
(UG/L
AS AS)
(01002) | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) <.20 <.20 .70 BARIUM, DIS- SOLVED (UG/L AS BA) (01005) | GEN, AMMONIA TOTAL (MG/L AS N) (00610) .01 .02 .02 .02 .02 BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA) (01007) | GEN, AMMONIA TOTAL (MG/L AS NH4) (71845) .01 .03 .03 .03 .03 .03 BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010) | GEN, NO2+NO3 TOTAL (MG/L AS N) (00630) <.020 <.020 <.020 <.020 BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE) (01012) | GEN, ORGANIC TOTAL (MG/L AS N) (00605) 68 BORON, DIS- SOLVED (UG/L AS B) (01020) | PHORUS TOTAL (MG/L AS P) (00665) <.02 .02 .06 BORON, TOTAL RECOV- ERABLE (UG/L AS B) (01022) | DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340) 7 <5 <5 <5 CADMIUM DIS- SOLVED (UG/L AS CD) (01025) <.5 | MTEC MF WATER (COL/ 100 ML) (31633) <1k E10k E3k E8k CADMIUM WATER UNFITRD TOTAL (UG/L AS CD) (01027) <.5 | FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625) <1k E6k E6k CHRO-MIUM, DIS- SOLVED (UG/L AS CR) (01030) | MONY, DIS- SOLVED (UG/L AS SB) (01095) <1 <1 <1 <1 CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR) (01034) | # 09508500 VERDE RIVER BELOW TANGLE CREEK ABOVE HORSESHOE DAM, AZ—CONTINUED WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | | | | | | | | MANGA- | | | | | | |-----------|-----------------|------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-------------------|-------------------|---------|------------------|----------------| | | COPPER, | COPPER,
TOTAL | IRON, | IRON,
TOTAL | LEAD, | LEAD,
TOTAL | MANGA-
NESE, | NESE,
TOTAL | MERCURY | MERCURY
TOTAL | NICKEL, | NICKEL,
TOTAL | SELE-
NIUM, | | | DIS- | RECOV- | DIS- | RECOV- | DIS- | RECOV- | NESE,
DIS- | RECOV- | MERCURY
DIS- | RECOV- | DIS- | RECOV- | DIS- | | | SOLVED | ERABLE | SOLVED | | Date | (UG/L | Date | AS CU) | AS CU) | AS FE) | AS FE) | AS PB) | AS PB) | AS MN) | AS MN) | AS HG) | AS HG) | AS NI) | AS NI) | AS SE) | | | (01040) | (01042) | (01046) | (01045) | (01049) | (01051) | (01056) | (01055) | (71890) | (71900) | (01065) | (01067) | (01145) | | | | | | | | | | | | | | | | | DEC | | | | | | | | | | | | | | | 18 | <2 | <2 | <2 | 80 | <2 | <2 | 3 | 6 | <.10 | <.1 | <1 | <1 | <1 | | APR | _ | _ | _ | | _ | _ | _ | | | _ | _ | _ | _ | | 03 | <2 | <2 | <2 | 801 | <2 | <2 | 7 | 33 | <.10 | <.1 | <1 | 3 | 1 | | JUN | -0 | <2 | <2 | 534 | <2 | <2 | 7 | 26 | <.10 | <.1 | <1 | 2 | -1 | | 13
AUG | <2 | < 2 | <2 | 534 | <2 | < 2 | , | 20 | <.10 | <.1 | < 1 | 2 | <1 | | 09 | <2 | <2 | <2 | 842 | <2 | <2 | 6 | 36 | <.10 | <.1 | <1 | 3 | <1 | | 05 | | | | 012 | | -2 | Ü | 30 | STRON- | | | | | | SEDI- | | | | | | | | SILVER, | TIUM, | THAL- | | | ZINC, | | MENT, | | | | | | SELE- | SILVER, | TOTAL | TOTAL | LIUM, | THAL- | ZINC, | TOTAL | SEDI- | DIS- | | | | | | NIUM, | DIS- | RECOV- | RECOV- | DIS- | LIUM, | DIS- | RECOV- | MENT, | CHARGE, | | | | | D-+- | TOTAL | SOLVED | ERABLE | ERABLE
(UG/L | SOLVED | TOTAL | SOLVED | ERABLE | SUS- | SUS- | | | | | Date | (UG/L
AS SE) | (UG/L
AS AG) | (UG/L
AS AG) | AS SR) | (UG/L
AS TL) | (UG/L
AS TL) | (UG/L
AS ZN) | (UG/L
AS ZN) | PENDED
(MG/L) | PENDED
(T/DAY) | | | | | | (01147) | (01075) | (01077) | (01082) | (01057) | (01059) | (01090) | (01092) | (MG/L)
(80154) | (80155) | | | | | | (01147) | (01073) | (01077) | (01062) | (01037) | (01039) | (01090) | (01092) | (00134) | (00133) | | | | | DEC | | | | | | | | | | | | | | | 18 | <1 | <1 | <1 | 720 | <2 | <2 | 5 | <2 | 3.0 | 2.0 | | | | | APR | | | | | | | | | | | | | | | 03 | 1 | <1 | <1 | 900 | <2 | <2 | 7 | 4 | 44 | 21.3 | | | | | JUN | | | | | | | | | | | | | | | 13 | <1 | <1 | <1 | 940 | <2 | <2 | 4 | 2 | 62 | 13.4 | | | | | AUG | _ | _ | _ | | _ | _ | _ | _ | | | | | | | 09 | <1 | <1 | <1 | 1020 | <2 | <2 | 6 | 6 | 37 | 10.8 | | | | | | | | | | | | | | | | | | | ^{09... &}lt;1 <1 <1 <1 Remark codes used in this report: <-- Less than E -- Estimated value Value qualifier codes used in this report: c -- See laboratory comment k -- Counts outside acceptable range 1 -- Sample lab preparation problem 4 GILA RIVER BASIN # 09508500 VERDE RIVER BELOW TANGLE CREEK ABOVE HORSESHOE DAM, AZ—CONTINUED WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 Water-quality measurements in the following table were made as part of the ADEQ Fixed-Station Network Program. The following analyses are quality-assurance samples processed during the 2002 sampling period and are defined in the introductory text section titled "Water-Quality Control Data". | Date | Time | Sample
type | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N)
(00610) | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
(00630) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | BARIUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005) | |---------------------|---|---|--|--|---|---|---|---|---|---|---|--|---| | JUN | | | | | | | | | | | | | | | 13 | 1345 | 2 | 6.2 | 1 | .04 | <.03 | <.1 | <.20 | <.01 | <.020 | <.02 | <3 | <.5 | | Date | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE)
(01010) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD)
(01025) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR) | COPPER,
DIS-
SOLVED
(UG/L
AS CU)
(01040) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI)
(01065) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN)
(01090) | | | | | | JUN | | _ | | _ | _ | _ | | | | | | | | | 13
ORemark codes | <1 | <.5 | <1 | <2 | <2 | <2 | <1 | <1 | 4 | | | | | | UREMAIK COdes | used In | cmrs repo | Tr. | | | | | | | | | | | < -- Less than